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Abstract

Early detection of disease outbreaks is critical for disease spread control and management. In this work we
investigate the suitability of statistical machine learning approaches to automatically detect Twitter messages
(tweets) that are likely to report cases of possible influenza like illnesses (ILI). Empirical results obtained on a
large set of tweets originating from the state of Victoria, Australia, in a 3.5 month period show evidence that
machine learning classifiers are effective in identifying tweets that mention possible cases of ILI ( up to 0.736
F-measure, i.e. the harmonic mean of precision and recall), regardless of the specific technique implemented by

the classifier investigated in the study.

Introduction

Early detection of disease outbreaks is a crucial capability for hospitals and public health officials to ef-
fectively allocate resources to control the spread of diseases and treat affected patients [1,2]. In Aus-
tralia, state agencies keep track of the number of patients tested positive for influenza and influenza like
illnesses (ILI). National initiatives attempt to obtain timely reporting through measures such as the Aus-

tralian Sentinel Practices Research Network (ASPREN) (http://www.aspren.com.au/, last visited October



13, 2014), the National Health Call Centre Network (http://www.health.gov.au/internet/main/publishing.
nsf/Content /national-health-call-centre-network-team-overview, last visited October 13, 2014) and commu-
nity level surveillance through FluTracking (http://www.flutracking.net/, last visited October 13, 2014).
These systems, although enlarging the population base that is monitored, suffer poor participation rates [3]
and high costs.

Figure 1 outlines the disease prevalence pyramid, where the width of each layer represents the population
size involved or monitored. The benefits of expanding the data sources used to produce disease outbreak
notifications to web data and social media [4], in particular Twitter, are numerous. The data is pub-
licly available, its access cost is low, the participation rate is high (http://www.nielsen.com/us/en/insights/
news/2010/australia-getting-more-social-online-as-facebook-leads-and-twitter-grows.html, last visited Oc-
tober 13, 2014) and the user base is generally broad, although not uniform with respect to age groups and
geographic areas. By leveraging information published in Twitter, real time reporting across a large fraction
of the population may be possible.

Previous studies that monitored Twitter in the US [5] and UK [6, 7] have found that it is possible to
produce highly correlated predictions for influenza-affected patients from the use of Twitter alone. How-
ever, the use of Twitter is not without its problems. The volume of tweets is exceedingly large, with
users producing over 200 million tweets per day globally as of mid 2011 (http://blog.twitter.com/2011/06/
200-million-tweets-per-day.html, last visited October 13, 2014). The content of a message is highly con-
densed and often expressed differently than natural language due to the size limitation of a tweet (140
characters). To render the data useful for predictions, it must be collected and analysed in real time, and
its manual processing may not be timely nor cost efficient.

This necessitates an automatic system that can classify tweets reporting influenza cases with high accu-
racy. Previous work by Collier and Doan [8] has shown evidence that Naive Bayes (NB) and Support Vector
Machine (SVM) classifiers, informed by a limited set of textual features created by extracting only terms
contained in an health ontology, were able to classify tweets with respect to common syndromic categories.

This paper presents a study of detecting mentions of influenza from Twitter messages originating from
Victoria, Australia, which is characterised by a smaller and more geographically diverse population (higher
population density and high-speed/large-bandwidth internet access in metropolitan areas, and low popula-
tion density and low-speed/small-bandwidth internet access in rural and regional areas) than those studied
in previous work. The paper reports a thorough evaluation of an array of machine learning approaches

for identifying Twitter messages that may indicate cases of ILI. Correlation with confirmed influenza cases



was not within the scope of this work. Investigated methods go beyond the two popular classifiers tested
previously by others, i.e. Naive Bayes and Support Vector Machine, expanding the analysis to other learning
approaches such as decision trees (C4.5/J4.8, Random Forests, Logistic Model Trees), and perceptrons and
regression models (Voted Perceptron, Linear Logistic regression, Multinomial Logistic Regression). The re-
sults suggest that machine learning techniques are able to discriminate among tweets containing mentions of
influenza or relevant symptoms and irrelevant messages. In addition, our experiments show that SVM clas-
sifiers do not always return the highest performance, and alternative approaches (e.g. Multinomial Logistic
Regression and Random Forests) return higher performance under specific settings. However, the results
also reveal that there is only limited differences in performance across the different types of classifiers. This
suggests that future research efforts on the detection of influenza related tweets should be directed beyond
improving machine learning techniques, in particular addressing how disease outbreak monitoring systems
should cope with false positive notifications produced by the proposed automatic methods, as well as true

influenza mentions that are not captured (i.e. false negatives).

Collection of Twitter messages and manual assessment
We obtained tweets posted in a 3.5 month period (May to August 2011), corresponding to the peak Australian
flu season, all of which originated from users based in Victoria. This amounted to just over 13.5 million
tweets. The tweets were captured using the ESA-AWTM architecture [9] that leverages the Twitter API,
incorporating other services such as Yahoo! and Google maps to add extra metadata (e.g. location data).
Initial analysis of these tweets revealed that around 0.1-0.2% of all 13.5 million tweets reported influenza
cases [10]. In order to retain a significant amount of positive influenza reporting tweets from our data to train
a classifier, but still be able to efficiently deploy computational methods, the Twitter stream was filtered to
store only messages that contained keywords (and their derivatives) that may indicate cases of influenza.
These keywords are listed in Table 1 and were selected by considering typical influenza symptoms as well
as extending the keywords reported in previous research (e.g. Sadilek et al. [11] and Signorini et al. [12]).
Note that re-tweets were removed. The application of this filtering process retained approximately 100,000
messages that were potentially influenza-related (0.75% of the initial data).

From these approximately 100,000 tweets, a set of 10,483 tweets was randomly selected for manual
classification to assess their likelihood of reporting a case of influenza. Seventeen volunteer assessors from
The Australian e-Health Research Centre, CSIRO were asked to use a scale of 0-100 to select how likely they

thought a tweet was representative of the user reporting a case of influenza (either with themselves or in



others): 0 being no flu, 100 being certain of a flu. Figure 2 presents the results of this manual classification.
The majority of filtered tweets (78.12%) were assessed as not related to ILI, although interestingly, 6.49%
of tweets were assessed as certainly related to ILI.

In addition, 363 tweets, from the set of those that were manually classified, were assessed by multiple
volunteers (three classifications per tweet on average), as an effort to measure inter-assessor agreement. The
average standard deviation between the scores of tweets with multiple assessors was 4.89, indicating that
the classification labels assigned by different assessors were comparable. Shorter tweets did have a higher
standard deviation on average, as might be expected given that they contain less information. However, the
differences between their scores were not judged large enough to require them to be treated differently. If a

tweet was reviewed by more than one assessor, its average score was used for the remainder of the analysis.

Automatic flu classification: statistical machine learning classifiers
Problem definition

The problem of detecting ILI-related Twitter messages is casted into a binary classification problem: classify
a tweet as being ILI-related or not. The collected ground truth indicates the likelihood of a tweet to be ILI-
related as a percentile score (i.e. between 0 and 100). Percentile scores were transformed into binary classes
according to a threshold th which “defines an influenza related tweet”. We refer to “definition of influenza
related tweet” as the process of collapsing percentile scores assigned to tweets into a binary classification (i.e.
ILI-related or not). Thus a “loose definition” corresponds to considering as influenza-related also tweets that
have been assigned a relatively low score (e.g. 50). A "strict definition” instead corresponds to considering

as influenza-related only tweets assigned with a high score (e.g. 100).

Classifiers

The machine learning classification methods evaluated in this study for the task of identifying influenza-
related tweets are listed below. We investigated classifiers from three wide families of machine learning
approaches, namely linear classifiers, support vector machines and decision trees. The corresponding Weka
version 3.6.7 [13] implementations of these classifiers were used in the empirical experiments.

Linear classifiers
e standard Naive Bayes classifier.

e Linear logistic regression classifier (SimpleLogistic in Weka).



e multinomial logistic regression classifier with ridge estimator [14] (Logistic in Weka).
e Voted Perceptron which takes advantage of data that is linearly separable with large margins.
Support Vector Machine (SVM) classifiers

e Support Vector Machine (SMO in Weka) that uses a polynomial kernel and the sequential minimal

optimization algorithm by Platt [15].

e Support Vector Machine (SPegasos in Weka) that uses a linear kernel and a stochastic variant of the

primal estimated sub-gradient solver method by Shalev-Shwartz et al. [16].
Decision trees

e (4.5 Decision Tree learner (J48 in Weka) that builds a decision tree based on information entropy as

measured on training data.

e Random Forest, an ensemble classifier method that constructs multiple decision trees during the train-

ing phase.

e Logistic model trees classifier (LMT in weka) where logistic regression functions are used at the leaves

of the tree.

Details of the classification approaches and their implementation can be found in the Weka documenta-

tion; standard settings were used as defined in the software package.

Features

The Medtex text analysis software [17] was used to extract features from the free-text of Twitter messages.
Medtex is a medical text analysis platform that has been used in previous studies on cancer reporting [18-20],
radiology reconciliation [21], and medical information retrieval [22]. Medtex architecture is characterised
by a messaging framework built on the concept of message queues, producers (senders), and consumers
(receivers). Because multiple message consumers can be set up in parallel to receive messages from the
same queue, Medtex provides high text analysis throughput, making it an ideal framework for analysing
large streams of Twitter data. While some of the specific clinical text analytic capabilities of Medtex were
not used in this study (e.g. SNOMED CT and UMLS concept extraction), we extended the platform to

include information extraction capabilities for specific entities that are present in Twitter messages, such as



the presence of Twitter usernames (e.g. @Username), hash-tags indicating specific topics (e.g. #Topic), and
emoticons (e.g. :-) and ; ().

The features extracted from tweets using the Medtex software include:
e word tokens: strings identified by word boundaries such as white spaces and punctuation;

e word stems: the root stems of the word tokens (if available); stems were extracted using the Porter

stemmer algorithm [23];

e word token n-grams: a continuous sequence of n word tokens in a tweet; we extracted both bi-grams

and tri-grams (n = 2 and n = 3);

e binary feature representing the presence of a http:// token, identifying that the tweet contains a link

to a web page;

e binary feature representing the presence of the token @ followed by a sequence of characters, identifying

that the tweet has been directed to a Twitter user or presents a mention of that user;

e binary feature representing the presence of hashtags, i.e. tokens that start with the symbol # used to

mark keywords or topics in a tweet;

e binary feature that represents the presence of a positive (negative) emoticon, i.e. a metacommunicative
pictorial representation of a facial expression that conveys a positive emotion like happy, love, etc. (a

list of positive and negative emoticons is given in Table 2);

A total of 26,698 unique features formed the feature vocabulary for the entire set of annotated tweets

used in the experiments reported in this article.

Experimental settings
To evaluate the effectiveness of the machine learning approaches investigated in this article, we set up an
evaluation framework that consisted of a first set of experiments using the 10-fold cross-validation methodol-
ogy and a subsequent set of experiments where the classification models learnt in the cross-fold experiments
were validated on unseen data (i.e. data not used for creating the models).

To this aim, we first constructed a balanced dataset for cross-validation experiments, that contained an

equal number of positive (influenza-related) and negative (not influenza-related) instances. Specifically, the



dataset contained 90% of the positive instances (i.e. tweets that had been annotated as being influenza-
related) and an equal amount of negative instances. These instances were randomly sampled from the
respective classes. This dataset was subsequently randomly partitioned in 10 folds, and for each iteration of
the cross-validation algorithm a unique combination of 9 folds were used for learning a classification model
and the excluded one was used for testing the obtained model.

A second dataset was then formed by combining the remaining 10% of positive instances with the re-
maining amount of negative instances: this dataset was used to validate on unseen data the models learnt
through cross-validation.

The described procedure was iterated for each ‘likelihood of influenza score’ threshold level (th), i.e.
datasets were constructed for each threshold value: datasets varied in size across threshold values, due to
the difference in number of positive instances when considering strict (e.g. th = 99) or relaxed (e.g. th = 49)
thresholds for defining an influenza-related tweet. The use of unseen data to validate the models created

using n-fold cross validation further reduces risks that the obtained results are due to over-fitting.

Classification effectiveness
Effectiveness on 10-fold cross validation

Precision and recall values obtained by the studied classifiers in the 10-fold cross-validation experiments
and with different threshold values th are detailed in Table 3 and the F-measure values are plotted in
Figure 3. The F-measure summarises the precision-recall evaluation, being a balanced average of the two
measures. Because the dataset used for the cross-validation experiments is balanced (same number of positive
and negative instances), the two target classes (i.e. influenza and not-influenza) have equal importance.
A majority class classifier then would achieve a maximum of 0.5 precision/recall/F-measure value. The
confusion matrices for each setting of classifier and threshold value are reported in Table 4.

Figure 3 suggests that overall, all classifiers achieve better performance when a loose definition of influenza
related tweets is used, i.e. when 49 < th < 74, with the best F-measure value achieved by multinomial logistic
regression classifier (Logistic, 0.736 F-measure at th = 59). When stricter threshold values are used, then
the F-measures of all classifiers decrease, this decrement occurring somewhere in the interval of threshold
values between 74 and 84, with F-measures being overall stable between 84 and 99. The values of precision
and recall (Table 3) report a similar finding, although losses in performance are different across precision and
recall for different classifiers. For example, the Random Forests classifier exhibits a higher loss in precision

than that in recall when passing from a threshold value of 49 to 99. Conversely, the Naive Bayes classifiers



exhibits similar losses in performance across both precision and recall when considering threshold values of
49 and 99.

Figure 3 confirms findings of previous studies, that Support Vector Machine approaches are generally
better than Naive Bayes in determining if a tweet is reporting ILI cases, e.g. [8]. However, our study reports
on the performance of a wider range of classifiers. The empirical results show that there are a number of
classifiers that guarantee performance that are usually bounded by those of SVMs and Naive Bayes, and
exceed SVMs performance in specific circumstances. For example, while the multinomial logistic regression
classifier (Logistic) generally achieves F-measures higher than Naive Bayes but lower than SVMs, it does
improve over SVMs when the threshold value is 59. The multinomial logistic regression classifier in fact proves
to be comparable to the best SVM approach (SMO — polynomial kernel and sequential minimal optimisation
algorithm) when a relaxed definition of influenza is used to classify tweets. When a more strict definition
of flu-related tweets is adopted, the performance of Logistic degrades, indicating poor robustness across
threshold values of this logistic regression classifier for this task. A similar conclusion can be drawn for the
other logistic regression approaches investigated in this study. In fact, the linear logistic regression classifier
(denoted SimpleLogistic) produces F-measures comparable to that of SVMs when the threshold is set to
59, 89, 94; however it does perform poorly with other threshold values, i.e. 49, 74, 99.

We now examine the results reported in Table 4, i.e. the confusion matrices produced by each classifier
in the cross-validation experiments. Confusion matrices provide a crude but finer-grain understanding of
classifier performance than summary measures like F-measure. For each matrix in the table, the first row
indicates the number of tweets that are influenza-related according to the ground truth annotations and their
classification value according to the studied classifiers (left column: classified as influenza, i.e. true positive
(TP) cases; right column: classified as non-influenza, i.e. false negative (FN) cases). Vice versa, the second
row indicates the number of tweets that have been assessed as not reporting influenza cases; the leftmost
value corresponds to non-influenza tweets that have been erroneously classified as being influenza-related
(i.e. false positive — FP), while the rightmost value corresponds to non-influenza tweets that have been
correctly classified (i.e. true negative — TN).

If identifying more influenza-related tweets is of key importance, then the best classifier that achieves
this is the one with the larger number of TP instances (or vice-versa, the lower number of FN). In Table 4,
the highest TP value has been highlighted in bold for each threshold value. For low-mid threshold values
(49 < th < 84), the multinomial logistic regression classifier (Logistic) returns the highest number of

TP instances. For higher threshold values, the highest number of TP instances is returned by the voted



perceptron (th = 89,99) and SVMs classifiers (th = 94), although Logistic provides a very similar result.
If on the other hand producing a low amount of false positive influenza alerts is of key importance, then
the most suitable classifier is the one that produces the lowest amount of FP instances (or vice-versa, the
highest number of TN); this has been highlighted in italics in Table 4. While the Random Forests classifier
produces the lowest number of FP instances at low and high threshold values (th = 49,94,99), not one

classifier exhibits consistently lower FP instances for mid values of the threshold (59 < th < 89).

Effectiveness on unseen data
The results obtained by the classifiers when validated against unseen data are analysed next. Tables 5 and 6
report respectively the F-measure values and the confusion matrices produced by the classifiers.

The classifiers exhibit lower F-measures when validated on the unseen dataset than when tested in the
cross-validation settings. This is because the dataset used for cross-validation was balanced across the two
classes (same number of influenza-related and non influenza-related instances), while the dataset used in
this second experiment is heavily imbalanced towards the negative class. This means that there are many
more non-influenza tweets than the influenza ones: in fact, the percentage of influenza-related tweets in this
dataset varies across the different threshold values and ranges between 2.22% for th = 49 and 0.74% for
th = 99 (while in the balanced dataset was 50%). Nevertheless, the results confirm the observation made
in the cross-validation settings that automatically classifying tweets under a loose definition of influenza is
easier than under the strict settings, i.e. all classifiers obtain higher F-measures for low threshold values
than for high threshold values. The SPegasos variation of SVM does however constitute an exception, as
inconsistent F-measure values are measured across the range of threshold values; in particular, performance
yielded at the lowest threshold are worse than that at any other threshold value. The values reported in
the confusion matrices for SPegasos (Table 6) highlight that this classifier is unable to correctly identify a
large percentage of positive instances (TP) while it correctly identifies non-influenza cases (TN) at a higher
rate than other classifiers, therefore yielding often larger values of F-measure due to the imbalanced nature
of the dataset.

The results discussed in the previous paragraph suggest that considering F-measure values may lead to
performance underestimation: an error rate for negative instances has a proportional larger contribution
than a similar error rate on positive instances. To avoid this, we calculate the balanced accuracy yielded

by each classifier under the different threshold settings. Balanced accuracy A (i.e. the average accuracy



obtained on either class) is defined as [24]:

0.5«TP 0.5«TN

A:
TP+ FN TN 1 FP

(1)

When contrasted with the standard accuracy measure, balanced accuracy presents the advantage that
A s high if a classifier performs equally well on both classes, while A is low when high (standard) accuracy
is obtained only because the classifier is advantaged or penalised by an imbalanced dataset, like in this
case. A majority class classifier (in this case a classifier that assigns every instance to the negative class)
and a minority class classifier (all instances assigned to the positive class) will obtain a balanced accuracy
equivalent to chance (i.e. 0.5). The balance accuracy obtained by the classifiers investigated in this study is
reported in Table 7.

Values of balanced accuracy generally decrease as the threshold values increase: this confirms the previous
analysis. In addition, balance accuracy reveals that the SVM instance implemented by SPegasos performs
just above chance across all threshold values. This suggests that the model learnt by SPegasos on the cross-
validation data is poorly applicable to the unseen data contained in the second dataset. Performance of other
classifiers do however scale on unseen data. The best values of balance accuracy across each threshold value
are highlighted in bold in Table 7. The observation that the Naive Bayes classifiers constitutes a lower bound
in classification performance in the cross-validation experiments is confirmed in this second experimental
setting. The SMO implementation of SVM classifier is confirmed to provide consistently high performance.
The finding observed under the cross-validation settings that the multinomial regression classifier Logistic
performs similar to SMO for low threshold value while losing effectiveness for higher vales is confirmed in this
experiment. Vice versa, in this second experiment the other linear regression classifier, SimpleLogistic, is

found to provide similar results to SMO across the different threshold values.

Conclusions

In this paper we have investigated the performance of machine learning classifiers for the task of detecting

Twitter messages that mention possible cases of influenza or ILI. Our experiments considered a number of

standard textual features, such as word tokens, stems and n-grams; in addition, we did consider features

that are specific to Twitter messages, such as the presence of Twitter usernames, hashtags (i.e. #String),

URLs and emoticons. The creation and investigation of new alternative features is left for future research.
Previous studies have shown the effectiveness of SVMs over Naive Bayes classifiers. While our study

confirms this result, we show that Naive Bayes’s performance can often be considered as the lower bound
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of a wide range of alternative classifiers and that there are a number of classifiers that perform similarly
(or better under specific settings) than SVMs. In particular, the instance of SVM with linear kernel and
stochastic gradient descent (SPegasos) tested in our study showed limited robustness when tested on a
heavy imbalanced unseen dataset, although confirming good performance on cross-validation experiments
with balanced data.

Differences in performance between the cross-validation experiments and those on unseen data may
highlight the importance of the training methodology used to form the classifiers, and in particular whether
to balance or stratify the datasets used during the training and testing phases. Chai et al [25] found
that classification methods trained, validated, and tested on balanced datasets overestimated classification
performance when compared with testing on imbalanced (stratified) data. Similar results were found in our
study, where classifiers’ F-measure in the cross-validation experiments (with a balanced dataset) were higher
than those achieved in the unseen dataset experiments (with an imbalanced dataset). To overcome this issue
and present a meaningful analysis of the result obtained on unseen data, we used the balanced accuracy
measure [24], that overcomes the issue of a biased classifier that has taken advantage of an imbalanced test
set, like in the case for the SPegasos classifier in our experiments. We leave further investigation and analysis
of training/testing methodology designs to future work.

Finally, the results also reveal that often there is only limited difference in performance across the
different investigated classifiers. This suggests that future research efforts for the detection of ILI related
tweets should be directed beyond improving machine learning techniques, in particular addressing how
disease outbreak monitoring systems should cope with false positive notifications produced by the proposed
automatic methods. Knowing the exact number of true ILI-related tweets may be not necessary in the
settings of a disease outbreak monitoring system, as increases or decreases in trends of tweets classified as
likely to be ILI-related may be sufficient to correctly suggest disease outbreaks. This hypothesis requires

further investigation and is left for future work.
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Figures

Figure 1: Disease prevalence pyramid and notification data sources; dotted line is proposed. Adapted
from [10].

Figure 2: Manually classified tweets, bucketed by likelihood of influenza or ILI score.

Figure 3: Classifier effectiveness (F-measure) at different threshold values.

Tables

Table 1: Keywords that may indicate or exclude cases of influenza.

(a) Included keywords.

flu sick headache fever unwell chills antibiotics
ache cough throat cold doctor fatigued tissues
stomach  runny sneeze pneumonia  down with vomit snot
influenza  Stuffy tylenol diarrhea nausea vicks shivering

(b) Excluded keywords.

doctor who jab vaccine
shot pandemic  fully sick
weather Bieber sick of
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Table 2: List of emoticons associated with positive and negative emotions.

Emoticons
:) :=) :-) :D :=D :-D :d :=d :-d 8) 8=) 8-) B) B=) B-)
.. . :0 =0 :-o0 :0 :=0 :-0 :* :=x :-% :P :=P :-P :p :=p :-p

Positive Emotions '§ :=$ :=$ :\"> 1:) >:) 8-| B-| 8| B| 8=| B=|

:x i-x X =X # -# =x =X =% 7 -7 :=7

sC =0 =CCs=Cs=C G sl oe=oe= 7)) I9)
Negative Emotions I=) ICI-CI=C -0 :& :-& :=% :@ :-@ :=0

x( x-( x=(C X( X-( X=( :8 :-S :=8 :s :-s :=s

Table 3: Precision (prec) and recall (rec) values with respect to the ‘likelihood of influenza’ threshold level
obtained by the studied classifiers when evaluated using 10-fold cross-validation. Bolded results indicate the
best performance achieved for each threshold value.

th > 49 th > 59 th > 74 th > 84 th > 89 th > 94 th > 99
rec prec rec prec rec prec rec prec rec prec rec prec rec prec
NaiveBayes 752 .668 752 .695 742 .687 736 632 732 .636 734 .639 734 .641
J4.8 .760 .682 .750 .693 747 .685 748 .638 | .T55  .643 751 .640 749 .634
SMO .760 .664 759 710 | 748 696 746 .654 | .755  .645 746 .643 | .745 .645
SPegasos .764 674 | .T61 703 747 .685 | .7T49  .647 | .755  .647 749 .643 | 747 .647
VotedPerceptron | .762 .682 .750 703 .740 .700 .730 .653 732 .651 | .730 .635 721 .650
Logistic 753 .690 | 751 .722 | 736 .706 | .725 .665 | .730 .650 728 .642 728 .650
SimpleLogistic .758 674 751 714 738 .676 147 .644 .750 .645 752 .639 749 .632
LMT 765  .684 .760 .694 744 .685 748 .638 754 .642 752 634 | .751  .637
RandomForest 765 .684 | .761  .698 742 .687 | .7T49  .634 754 .636 | .753  .627 .746 .637

Table 4: Confusion Matrices for 10-fold cross-validation experiments.
instances reporting ILI cases, while NI indicates the negative class, i.e. non-ILI instances. Bolded results
indicate the highest true positive (TP) value obtained for each threshold value; results highlighted in italics
indicate the lowest false positive (FP) value obtained for each threshold value.

I indicates the positive class, i.e.

th>49 | th>59 | th>74 | th>84 | th>8) | th>94 | th>099
predicted classes
I NI I NI I NI I NI I NI I NI I NI
Naive 984 489 | 809 355 | 672 306 | 426 248 | 410 235 | 394 223 | 392 220 | I
Bayes 324 1149 | 267 897 | 234 744 | 153 521 | 150 495 | 143 474 | 142 470 | NI
J438 989 484 | 824 340 | 674 304 | 430 244 | 414 231 | 393 224 | 394 218 | I
319 1154 | 270 894 | 230 748 | 141 533 | 185 510 | 131 486 | 131 481 | NI
SMO 980 493 | 812 352 | 679 299 | 434 240 | 417 228 | 397 220 | 395 217 | I
313 1160 | 2671 903 | 228 750 | 145 529 | 185 510 | 133 484 | 133 479 | NI
SPegasos | 981 492 | 812 352 | 679 299 | 435 239 | 417 228 | 397 220 | 395 217 | I w
313 1160 | 261 903 | 228 750 | 146 528 | 137 508 | 133 484 | 131 481 | NI | &
Voted 998 475 | 828 336 | 677 301 | 432 242 [ 421 224 [ 396 221 | 402 210 | I | £
Perceptron | 324 1149 | 279 885 | 231 747 | 154 520 | 155 490 | 144 473 | 152 460 | NI | o
Logistic | 1005 468 | 832 332 | 687 291 | 440 234 | 419 226 | 396 221 | 399 213 | I | &
334 1139 | 279 885 | 250 728 | 164 510 | 156 489 | 146 471 | 145 467 | NI
Simple 987 486 | 814 350 | 669 309 | 428 246 | 414 231 | 392 225 | 388 224 | I
Logistic 311 1162 | 271 893 | 220 758 | 149 525 | 135 510 | 120 488 | 130 482 | NI
LMT 119 45 93 37 75 34 | 428 246 | 414 231 | 390 227 | 389 223 | I
1700 5673 | 1882 6143 | 2032 6386 | 150 524 | 185 510 | 129 488 | 130 482 | NI
Random 985 488 | 817 347 | 682 296 | 427 247 | 410 235 | 388 229 | 386 226 | I
Forest 509 1164 | 264 900 | 233 745 | 142 532 | 137 508 | 128 489 | 126 486 | NI
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Table 5: F-measure values with respect to the threshold level obtained by the studied classifiers when

evaluated on unseen data.

th>49 | th>589 | th>T74 | th>84 | th>89 | th>94 | th > 99
NaiveBayes .110 .084 .064 .036 .034 .031 .031
J4.8 119 .083 .064 .037 .035 .033 .033
SMO 118 .086 .067 .038 .035 .033 .033
SPegasos .050 .101 .058 .108 .073 .079 .079
VotedPerceptron 117 .085 .066 .037 .034 .032 .031
Logistic 117 .085 .066 .037 .033 .030 .030
SimpleLogistic 120 .088 .068 .037 .035 .033 .033
LMT .120 .089 .068 .037 .035 .033 .033
RandomForest 119 .089 .066 .038 .035 .032 .033

Table 6: Confusion Matrices obtained when testing on unseen data.

I indicates the positive class, i.e.

instances reporting ILI cases, while NI indicates the negative class, i.e. non-ILI instances. Bolded results
indicate the highest true positive (TP) value obtained for each threshold value; results highlighted in italics
indicate the lowest false positive (FP) value obtained for each threshold value.

th>49 | th>59 | th>74 | th>84 | th>8 | th>94 | th>99
predicted classes
I NI I NI I NI I NI I NI I NI I NI
Naive 110 54 91 39 74 35 44 31 43 29 39 30 39 29 |1
Bayes 1725 5648 | 1950 6075 | 2124 6294 | 2298 6762 | 2414 6707 | 2413 6767 | 2416 6775 | NI
Jis I8 46 95 35 77 32 15 30 43 29 40 29 40 28 |1
1701 5672 | 2054 5971 | 2219 6199 | 2300 6760 | 2324 6797 | 2351 6829 | 2353 6838 | NI
SMO 7 47 94 36 78 31 46 29 43 29 40 29 40 28 [ 1
1696 5677 | 1954 6071 | 2133 6285 | 2320 6740 | 2324 6797 | 2351 6829 | 2353 6838 | NI
SPegasos 5 159 [ 10 120 5 104 7 683 1 68 5 64 5 63 |1 m
30 7343 | 58 7967 | 57 8361 | 48 9012 | 83 9088 | 58 9127 | 53 9138 | NI | @
Voted 121 43 95 35 73 36 46 29 44 28 42 27 | 41 27 T ] &
Perceptron | 1788 5585 | 2000 6025 | 2025 6393 | 2382 6678 | 2465 6656 | 2497 6683 | 2514 6677 | NI | o
Logistic | 121 43 95 35 78 31 46 29 43 29 38 31 40 28 [T | &
1776 5597 | 2002 6023 | 2170 6248 | 2392 6668 | 2463 6658 | 2396 6784 | 2529 6662 | NI
Simple 9 45 89 a1 76 33 5 30 43 29 40 29 40 28 |1
Logistic | 1700 5673 | 1855 6170 | 2060 6358 | 2189 6871 | 2324 6797 | 2351 6829 | 2353 6838 | NI
LMT 19 45 95 35 76 33 45 30 13 29 39 30 40 28 |1
1700 5673 | 1912 6113 | 2045 6373 | 2300 6760 | 2324 6797 | 2263 6917 | 2353 6838 | NI
Random | 119 45 94 36 77 32 41 31 a1 31 38 31 39 29 |1
Forest 1725 5648 | 1881 6144 | 2153 6265 | 2187 6873 | 2242 6879 | 2263 6917 | 2271 6920 | NI

Table 7: Balanced accuracy values (121) with respect to the threshold level obtained by the studied classifiers

when evaluated on unseen data.

th>49 | th>59 | th>T74 | th>84 | th>89 | th>94 | th> 99
NaiveBayes 718 729 713 667 .666 .651 .655
J4.8 744 737 721 673 .671 .662 .666
SMO 742 740 731 .679 671 .662 .666
SPegasos 513 .535 .520 .544 .526 .533 .534
VotedPerceptron .748 741 715 675 .670 .668 .665
Logistic .748 741 729 675 .664 .645 .657
SimpleLogistic .748 727 726 .679 .671 .662 .666
LMT .748 .746 727 673 671 .659 .666
RandomPForest .746 744 725 673 .662 .652 .663
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